Jumat, 17 Agustus 2012

INTERASKSI SOSIAL

.
0 comments


Interaksi sosial merupakan suatu fondasi dari hubungan yang berupa tindakan yang berdasarkan norma dan nilai sosial yang berlaku dan diterapkan di dalam masyarakat. Dengan adanya nilai dan norma yang berlaku,interaksi sosial itu sendiri dapat berlangsung dengan baik jika aturan - aturan dan nilai – nilai yang ada dapat dilakukan dengan baik. Jika tidak adanya kesadaran atas pribadi masing – masing,maka proses sosial itu sendiri tidak dapat berjalan sesuai dengan yang kita harapkan. Di dalam kehidupan sehari – hari tentunya manusia tidak dapat lepas dari hubungan antara satu dengan yang lainnya,ia akan selalu perlu untuk mencari individu ataupun kelompok lain untuk dapat berinteraksi ataupun bertukar pikiran. Menurut Prof. Dr. Soerjono Soekamto di dalam pengantar sosiologi, interaksi sosial merupakan kunci semua kehidupan sosial. Dengan tidak adanya komunikasi ataupun interaksi antar satu sama lain maka tidak mungkin ada kehidupan bersama. Jika hanya fisik yang saling berhadapan antara satu sama lain, tidak dapat menghasilkan suatu bentuk kelompok sosial yang dapat saling berinteraksi. Maka dari itu dapat disebutkan bahwa interaksi merupakan dasar dari suatu bentuk proses sosial karena tanpa adanya interaksi sosial, maka kegiatan–kegiatan antar satu individu dengan yang lain tidak dapat disebut interaksi.

Syarat interaksi sosial
Menurut Soerjono Soekanto, interaksi sosial tidak mungkin terjadi tanpa adanya dua syarat, yaitu kontak sosial dan komunikasi.
  1. 1. Kontak Sosial
    Kata “kontak” (Inggris: “contact") berasal dari bahasa Latin con atau cum yang artinya bersama-sama dan tangere yang artinya menyentuh. Jadi, kontak berarti bersama-sama menyentuh. Dalam pengertian sosiologi, kontak sosial tidak selalu terjadi melalui interaksi atau hubungan fisik, sebab orang bisa melakukan kontak sosial dengan pihak lain tanpa menyentuhnya, misalnya bicara melalui telepon, radio, atau surat elektronik. Oleh karena itu, hubungan fisik tidak menjadi syarat utama terjadinya kontak. Kontak sosial memiliki sifat-sifat berikut.
    Kontak sosial dapat bersifat positif atau negatif. Kontak sosial positif mengarah pada suatu kerja sama, sedangkan kontak sosial negatif mengarah pada suatu pertentangan atau konflik.
    Kontak sosial dapat bersifat primer atau sekunder. Kontak sosial primer terjadi apabila para peserta interaksi bertemu muka secara langsung. Misalnya, kontak antara guru dan murid di dalam kelas, penjual dan pembeli di pasar tradisional, atau pertemuan ayah dan anak di meja makan. Sementara itu, kontak sekunder terjadi apabila interaksi berlangsung melalui suatu perantara. Misalnya, percakapan melalui telepon. Kontak sekunder dapat dilakukan secara langsung dan tidak langsung. Kontak sekunder langsung misalnya terjadi saat ketua RW mengundang ketua RT datang ke rumahnya melalui telepon. Sementara jika Ketua RW menyuruh sekretarisnya menyampaikan pesan kepada ketua RT agar datang ke rumahnya, yang terjadi adalah kontak sekunder tidak langsung.
  2. Komunikasi
    Komunikasi merupakan syarat terjadinya interaksi sosial. Hal terpenting dalam komunikasi yaitu adanya kegiatan saling menafsirkan perilaku (pembicaraan, gerakan-gerakan fisik, atau sikap) dan perasaan-perasaan yang disampaikan. Ada lima unsur pokok dalam komunikasi yaitu sebagai berikut.
    Komunikator, yaitu orang yang menyampaikan pesan, perasaan, atau pikiran kepada pihak lain.
    Komunikan, yaitu orang atau sekelompok orang yang dikirimi pesan, pikiran, atau perasaan.
    Pesan, yaitu sesuatu yang disampaikan oleh komunikator. Pesan dapat berupa informasi, instruksi, dan perasaan.
    Media, yaitu alat untuk menyampaikan pesan. Media komunikasi dapat berupa lisan, tulisan, gambar, dan film.
    Efek, yaitu perubahan yang diharapkan terjadi pada komunikan, setelah mendapatkan pesan dari komunikator.

Ada tiga tahap penting dalam proses komunikasi. Ketiga tahap tersebut adalah sebagai berikut.
  1. Encoding
    Pada tahap ini, gagasan atau program yang akan dikomunikasikan diwujudkan dalam kalimat atau gambar. Dalam tahap ini, komunikator harus memilih kata, istilah, kalimat, dan gambar yang mudah dipahami oleh komunikan. Komunikator harus menghindari penggunaan kode-kode yang membingungkan komunikan.
  2. Penyampaian
    Pada tahap ini, istilah atau gagasan yang sudah diwujudkan dalam bentuk kalimat dan gambar disampaikan. Penyampaian dapat berupa lisan, tulisan, dan gabungan dari keduanya.
  3. Decoding
    Pada tahap ini dilakukan proses mencerna dan memahami kalimat serta gambar yang diterima menurut pengalaman yang dimiliki.

Faktor dasar terbentuknya interaksi sosial
Proses interaksi sosial yang terjadi dalam masyarakat bersumber dari faktor imitasi, sugesti, simpati, motivasi, identifikasi dan empati.
  • Imitasi: atau meniru adalah suatu proses kognisi untuk melakukan tindakan maupun aksi seperti yang dilakukan oleh model dengan melibatkan alat indera sebagai penerima rangsang dan pemasangan kemampuan persepsi untuk mengolah informasi dari rangsang dengan kemampuan aksi untuk melakukan gerakan motorik. Proses ini melibatkan kemampuan kognisi tahap tinggi karena tidak hanya melibatkan bahasa namun juga pemahaman terhadap pemikiran orang lain.
    Imitasi saat ini dipelajari dari berbagai sudut pandang ilmu seperti psikologi, neurologi, kognitif, kecerdasan buatan, studi hewan (animal study), antropologi, ekonomi, sosiologi dan filsafat. Hal ini berkaitan dengan fungsi imitasi pada pembelajaran terutama pada anak, maupun kemampuan manusia untuk berinteraksi secara sosial sampai dengan penurunan budaya pada generasi selanjutnya.
  • Identifikasi: adalah pemberian tanda-tanda pada golongan barang-barang atau sesuatu. Hal ini perlu, oleh karena tugas identifikasi ialah membedakan komponen-komponen yang satu dengan yang lainnya, sehingga tidak menimbulkan kebingungan. Dengan identifikasi dapatlah suatu komponen itu dikenal dan diketahui masuk dalam golongan mana. Cara pemberian tanda pengenal pada komponen, barang atau bahan bermacam-macam antara lain dengan menggantungkan kartu pengenal, seperti halnya orang yang akan naik kapal terbang, tasnya akan diberi tanpa pengenal pemilik agar supaya nanti mengenalinya mudah.
  • Sugesti: adalah rangsangan, pengaruh, stimulus yang diberikan seorang individu kepada individu lain sehingga orang yang diberi sugesti menuruti atau melaksanakan tanpa berpikir kritis dan rasional.
  • Motivasi: yaitu rangsangan pengaruh, stimulus yang diberikan antar masyarakat, sehingga orang yang diberi motivasi menuruti tau melaksanakan apa yang dimotivasikan secara kritis, rasional dan penuh rasa tanggung jawab . Motivasi biasanya diberikan oleh orang yang memiliki status yang lebih tinggi dan berwibawa, misalnya dari seorang ayah kepada anak, seorang guru kepada siswa.
  • Simpati: adalah ketertarikan seseorang kepada orang lain hingga mampu merasakan perasaan orang lain tersebut. Contoh: membantu orang lain yang terkena musibah hingga memunculkan emosional yang mampu merasakan orang yang terkena musibah tersebut.
  • Empati: yaitu mirip dengan simpati, akan tetapi tidak semata-mata perasaan kejiwaan saja. Empati dibarengi dengan perasaan organisme tubuh yang sangat intens/dalam.
Hubungan antara suatu individu masyarakat dengan relasi - relasi sosial lainnya,menentukan struktur dari masyarakatnya yang dimana hubungan antar manusia dengan relasi tersebut berdasarkan atas suatu komunikasi yang dapat terjadi di antara keduanya. Hubungan antar manusia atau relasi – relasi sosial,suatu individu dengan sekumpulan kelompok masyrakat,baik dalam bentuk individu atau perorangan maupun dengan kelompok – kelompok dan antar kelompok masyarakat itu sendiri,menciptakan segi dinamika dari sisi perubahan dan perkembangan masyarakat. Sebelum terbentuk sebagai suatu bentuk konkrit,komunikasi atau hubungan yang sesuai dengan nilai – nilai sosial di dalam suatu masyarakat,telah mengalami suatu proses terlebih dahulu yang dimana proses – proses ini merupakan suatu bentuk dari proses sosial itu sendiri.

Gillin & Gillin mengatakan bahwa Proses-proses sosial adalah cara-cara berhubungan yang dapat dilihat apabila orang-perorangan dan kelompok-kelompok manusia saling bertemu dan menentukan sistem serta bentuk-bentuk hubungan tersebut, atau apa yang akan terjadi apabila ada perubahan-perubahan yang menyebabkan goyahnya cara-cara hidup yang telah ada. Berdasarkan sudut inilah komunikasi dapat dipandang sebagai suatu sistem di dalam kelompok masyarakat maupun sebagai sebuh proses sosial. Adanya hubungan timbal balik dalam memperngaruhi tiap individu pada saat terjadinya komunikasi dapat membentuk suatu pengetahuan maupun pengalaman baru yang dirasakan oleh masing – masing individu. Hal ini membuat kegiatan komunikasi menjadi suatu dasar yang kuat dalam kehidupan maupun proses sosial seseorang. Adanya tingkat kesadaran di dalam berkomunikasi di antara warga – warga dalam kehidupan bermasyarakat dapat membuat masyarakat dipertahankan sebagai suatu kesatuan dan menciptakan apa yang dinamakan sebagai suatu sistem komunikasi. Sistem komunikasi ini mempunyai lambang – lambang yang diberi arti dan menghasilkan persepsi khusus dalam memahami lamabang – lambang tersebut oleh masyarakat.Karena kelangsungan kesatuannya dengan jalan komunikasi itu,setiap masyarakat dapat membentuk kebudayaan berdasarkan sistem komunikasinya masing-masing.



readmore »»

Selasa, 14 Agustus 2012

Model OSI

.
0 comments

Model referensi jaringan terbuka OSI atau OSI Reference Model for open networking adalah sebuah model arsitektural jaringan yang dikembangkan oleh badan International Organization for Standardization (ISO) di Eropa pada tahun 1977. OSI sendiri merupakan singkatan dari Open System Interconnection. Model ini disebut juga dengan model "Model tujuh lapis OSI" (OSI seven layer model).
Sebelum munculnya model referensi OSI, sistem jaringan komputer sangat tergantung kepada pemasok (vendor). OSI berupaya membentuk standar umum jaringan komputer untuk menunjang interoperatibilitas antar pemasok yang berbeda. Dalam suatu jaringan yang besar biasanya terdapat banyak protokol jaringan yang berbeda. Tidak adanya suatu protokol yang sama, membuat banyak perangkat tidak bisa saling berkomunikasi.

Model referensi ini pada awalnya ditujukan sebagai basis untuk mengembangkan protokol-protokol jaringan, meski pada kenyataannya inisatif ini mengalami kegagalan. Kegagalan itu disebabkan oleh beberapa faktor berikut:


  1. Standar model referensi ini, jika dibandingkan dengan model referensi DARPA (Model Internet) yang dikembangkan oleh Internet Engineering Task Force (IETF), sangat berdekatan. Model DARPA adalah model basis protokol TCP/IP yang populer digunakan.
  2. Model referensi ini dianggap sangat kompleks. Beberapa fungsi (seperti halnya metode komunikasi connectionless) dianggap kurang bagus, sementara fungsi lainnya (seperti flow control dan koreksi kesalahan) diulang-ulang pada beberapa lapisan.
  3. Pertumbuhan Internet dan protokol TCP/IP (sebuah protokol jaringan dunia nyata) membuat OSI Reference Model menjadi kurang diminati.

Pemerintah Amerika Serikat mencoba untuk mendukung protokol OSI Reference Model dalam solusi jaringan pemerintah pada tahun 1980-an, dengan mengimplementasikan beberapa standar yang disebut dengan Government Open Systems Interconnection Profile (GOSIP). Meski demikian. usaha ini akhirnya ditinggalkan pada tahun 1995, dan implementasi jaringan yang menggunakan OSI Reference model jarang dijumpai di luar Eropa.
OSI Reference Model pun akhirnya dilihat sebagai sebuah model ideal dari koneksi logis yang harus terjadi agar komunikasi data dalam jaringan dapat berlangsung. Beberapa protokol yang digunakan dalam dunia nyata, semacam TCP/IP, DECnet dan IBM Systems Network Architecture (SNA) memetakan tumpukan protokol (protocol stack) mereka ke OSI Reference Model. OSI Reference Model pun digunakan sebagai titik awal untuk mempelajari bagaimana beberapa protokol jaringan di dalam sebuah kumpulan protokol dapat berfungsi dan berinteraksi.

OSI Reference Model memiliki tujuh lapis, yakni sebagai berikut

Lapisan ke-
Nama lapisan
Keterangan
7
Application layer
Berfungsi sebagai antarmuka dengan aplikasi dengan fungsionalitas jaringan, mengatur bagaimana aplikasi dapat mengakses jaringan, dan kemudian membuat pesan-pesan kesalahan. Protokol yang berada dalam lapisan ini adalah HTTPFTPSMTP, dan NFS.
6
Presentation layer
Berfungsi untuk mentranslasikan data yang hendak ditransmisikan oleh aplikasi ke dalam format yang dapat ditransmisikan melalui jaringan. Protokol yang berada dalam level ini adalah perangkat lunak redirektor (redirector software), seperti layanan Workstation (dalam Windows NT) dan juga Network shell (semacam Virtual Network Computing (VNC) atau Remote Desktop Protocol (RDP)).
5
Session layer
Berfungsi untuk mendefinisikan bagaimana koneksi dapat dibuat, dipelihara, atau dihancurkan. Selain itu, di level ini juga dilakukan resolusi nama.
4
Transport layer
Berfungsi untuk memecah data ke dalam paket-paket data serta memberikan nomor urut ke paket-paket tersebut sehingga dapat disusun kembali pada sisi tujuan setelah diterima. Selain itu, pada level ini juga membuat sebuah tanda bahwa paket diterima dengan sukses (acknowledgement), dan mentransmisikan ulang terhadp paket-paket yang hilang di tengah jalan.
3
Network layer
Berfungsi untuk mendefinisikan alamat-alamat IP, membuat header untuk paket-paket, dan kemudian melakukan routing melalui internetworking dengan menggunakan router dan switch layer-3.
2
Data-link layer
Befungsi untuk menentukan bagaimana bit-bit data dikelompokkan menjadi format yang disebut sebagai frame. Selain itu, pada level ini terjadi koreksi kesalahan, flow control, pengalamatan perangkat keras (seperti halnya Media Access Control Address (MAC Address)), dan menetukan bagaimana perangkat-perangkat jaringan seperti hub,bridgerepeater, dan switch layer 2 beroperasi. Spesifikasi IEEE 802, membagi level ini menjadi dua level anak, yaitu lapisan Logical Link Control (LLC) dan lapisan Media Access Control (MAC).
1
Physical layer
Berfungsi untuk mendefinisikan media transmisi jaringan, metode pensinyalan, sinkronisasi bit, arsitektur jaringan (seperti halnya Ethernet atau Token Ring), topologi jaringan dan pengabelan. Selain itu, level ini juga mendefinisikan bagaimana Network Interface Card (NIC) dapat berinteraksi dengan media kabel atau radio.




readmore »»

TCP/IP Protocol

.
0 comments

Protokol Internet (Inggris Internet Protocol disingkat IP) adalah protokol lapisan jaringan (network layer dalam OSI Reference Model) atau protokol lapisan internetwork (internetwork layer dalam DARPA Reference Model) yang digunakan oleh protokol TCP/IP untuk melakukan pengalamatan dan routing paket data antar host-host di jaringan komputer berbasis TCP/IP. Versi IP yang banyak digunakan adalah IP versi 4 (IPv4) yang didefinisikan pada RFC 791 dan dipublikasikan pada tahun 1981, tetapi akan digantikan oleh IP versi 6 pada beberapa waktu yang akan datang.
Protokol IP merupakan salah satu protokol kunci di dalam kumpulan protokol TCP/IP. Sebuah paket IP akan membawa data aktual yang dikirimkan melalui jaringan dari satu titik ke titik lainnya. Metode yang digunakannya adalah connectionless yang berarti ia tidak perlu membuat dan memelihara sebuah sesi koneksi. Selain itu, protokol ini juga tidak menjamin penyampaian data, tapi hal ini diserahkan kepada protokol pada lapisan yang lebih tinggi (lapisan transport dalam OSI Reference Model atau lapisan antar host dalam DARPA Reference Model), yakni protokol Transmission Control Protocol (TCP).


Layanan yang ditawarkan oleh Protokol IP

  1. IP menawarkan layanan sebagai protokol antar jaringan (inter-network), karena itulah IP juga sering disebut sebagai protokol yang bersifat routable. Header IP mengandung informasi yang dibutuhkan untuk menentukan rute paket, yang mencakup alamat IP sumber (source IP address) dan alamat IP tujuan (destination IP address). Anatomi alamat IP terbagi menjadi dua bagian, yakni alamat jaringan (network address) dan alamat node (node address/host address). Penyampaian paket antar jaringan (umumnya disebut sebagai proses routing), dimungkinkan karena adanya alamat jaringan tujuan dalam alamat IP. Selain itu, IP juga mengizinkan pembuatan sebuah jaringan yang cukup besar, yang disebut sebagai IP internetwork, yang terdiri atas dua atau lebih jaringan yang dihubungkan dengan menggunakan router berbasis IP.
  2. IP mendukung banyak protokol klien, karena memang IP merupakan "kurir" pembawa data yang dikirimkan oleh protokol-protokol lapisan yang lebih tinggi dibandingkan dengannya. Protokol IP dapat membawa beberapa protokol lapisan tinggi yang berbeda-beda, tapi setiap paket IP hanya dapat mengandung data dari satu buah protokol dari banyak protokol tersebut dalam satu waktu. Karena setiap paket dapat membawa satu buah paket dari beberapa paket data, maka harus ada cara yang digunakan untuk mengidikasikan protokol lapisan tinggi dari paket data yang dikirimkan sehingga dapat diteruskan kepada protokol lapisan tinggi yang sesuai pada sisi penerima. Mengingat klien dan server selalu menggunakan protokol yang sama untuk sebuah data yang saling dipertukarkan, maka setiap paket tidak harus mengindikasikan sumber dan tujuan yang terpisah. Contoh dari protokol-protokol lapisan yang lebih tinggi dibandingkan IP adalah Internet Control Management Protocol (ICMP), Internet Group Management Protocol (IGMP), User Datagram Protocol (UDP), dan Transmission Control Protocol (TCP).
  3. IP mengirimkan data dalam bentuk datagram, karena memang IP hanya menyediakan layanan pengiriman data secara connectionless serta tidak andal (unreliable) kepada protokol-protokol yang berada lebih tinggi dibandingkan dengan protokol IP. Pengirimkan connectionless, berarti tidak perlu ada negosiasi koneksi (handshaking) sebelum mengirimkan data dan tidak ada koneksi yang harus dibuat atau dipelihara dalam lapisan ini. Unreliable, berarti IP akan mengirimkan paket tanpa proses pengurutan dan tanpa acknowledgment ketika pihak yang dituju telah dapat diraih. IP hanya akan melakukan pengiriman sekali kirim saja untuk menyampaikan paket-paket kepada hop selanjutnya atau tujuan akhir (teknik seperti ini disebut sebagai "best effort delivery"). Keandalan data bukan merupakan tugas dari protokol IP, tapi merupakan protokol yang berada pada lapisan yang lebih tinggi, seperti halnya protokol TCP.
  4. Bersifat independen dari lapisan antarmuka jaringan (lapisan pertama dalam DARPA Reference Model), karena memang IP didesain agar mendukung banyak komputer dan antarmuka jaringan. IP bersifat independen terhadap atribut lapisan fisik, seperti halnya pengabelan, pensinyalan, dan bit rate. Selain itu, IP juga bersifat independen terhadap atribut lapisan data link seperti halnya mekanisme Media access control (MAC), pengalamatan MAC, serta ukuran frame terbesar. IP menggunakan skema pengalamatannya sendiri, yang disebut sebagai "IP address", yang merupakan bilangan 32-bit dan independen terhadap skema pengalamatan yang digunakan dalam lapisan antarmuka jaringan.
  5. Untuk mendukung ukuran frame terbesar yang dimiliki oleh teknologi lapisan antarmuka jaringan yang berbeda-beda, IP dapat melakukan pemecahan terhadap paket data ke dalam beberapa fragmen sebelum diletakkan di atas sebuah saluran jaringan. Paket data tersebut akan dipecah ke dalam fragmen-fragmen yang memiliki ukuran maximum transmission unit (MTU) yang lebih rendah dibandingkan dengan ukuran datagram IP. Proses ini dinamakan dengan fragmentasi ([[Fragmentasi paket jaringan|fragmentation). Router atau host yang mengirimkan data akan memecah data yang hendak ditransmisikan, dan proses fragmentasi dapat berlangsung beberapa kali. Selanjutnya host yang dituju akan menyatukan kembali fragmen-fragmen tersebut menjadi paket data utuh, seperti halnya sebelum dipecah.
  6. Dapat diperluas dengan menggunakan fitur IP Options dalam header IP. Fitur yang dapat ditambahkan contohnya adalah kemampuan untuk menentukan jalur yang harus diikuti oleh datagram IP melalui sebuah internetwork IP. Xxxxxxxxxxxxxxxxxxxxxxxxxxx

Datagram IP
Paket-paket data dalam protokol IP dikirimkan dalam bentuk datagram. Sebuah datagram IP terdiri atas header IP dan muatan IP (payload), sebagai berikut:
  1. Header IP: Ukuran header IP bervariasi, yakni berukuran 20 hingga 60 byte, dalam penambahan 4-byte. Header IP menyediakan dukungan untuk memetakan jaringan (routing), identifikasi muatan IP, ukuran header IP dan datagram IP, dukungan fragmentasi, dan juga IP Options.
  2. Muatan IP: Ukuran muatan IP juga bervariasi, yang berkisar dari 8 byte hingga 65515 byte.
Sebelum dikirimkan di dalam saluran jaringan, datagram IP akan "dibungkus" dengan header protokol lapisan antarmuka jaringan dan trailer-nya, untuk membuat sebuah frame

Format datagram Protokol IP


Header IP

Header IP terdiri atas beberapa field sebagai berikut:

Field
Panjang
Keterangan
Version
4 bit
Digunakan untuk mengindikasikan versi dari header IP yang digunakan. Karena memiliki panjang 4 bit, maka terdapat 24=16 buah jenis nilai yang berbeda-beda, yang berkisar antara 0 hingga 15. Meskipun begitu hanya ada dua nilai yang bisa digunakan, yakni 4 dan 6, mengingat versi IP standar yang digunakan saat ini dalam jaringan dan Internet adalah versi 4 dan 6 merupakan singkatan dari versi selanjutnya (IPv6). Lihat situs web IANA untuk informasi mengenai field ini lebih lanjut.
Header length
4 bit
Digunakan untuk mengindikasikan ukuran header IP. Karena memiliki panjang 4 bit, maka terdapat 24=16 buah jenis nilai yang berbeda-beda. Field header length ini mengindikasikan bilangan double-word 32-bit (blok 4-byte) di dalam header IP. Ukuran terkecilnya adalah 5 (0x05), yang menunjukkan ukuran terkecil dari header IP yakni 20 byte. Dengan jumlah maksimum dari IP Options, ukuran header IP maksimum adalah 60 byte, yang diindikasikan dengan nilai 15 (0x0F).
Type of Service (TOS)
8 bit
Field ini digunakan untuk menentukan kualitas transmisi dari sebuah datagram IP. Ada dua jenis TOS yang didefinisikan, yakni padaRFC 791 dan RFC 2474. Hal ini akan dibahas pada seksi berikutnya.
Total Length
16 bit
Merupakan panjang total dari datagram IP, yang mencakup header IP dan muatannya. Dengan menggunakan angka 16 bit, nilai maksimum yang dapat ditampung adalah 65535 byte. Untuk datagram IP yang memiliki ukuran maksimum, field ini memiliki nilai yang sama dengan nilai maximum transmission unit yang dimiliki oleh teknologi protokol lapisan antarmuka jaringan.
Identifier
16 bit
Digunakan untuk mengidentifikasikan sebuah paket IP tertentu yang dikirimkan antara node sumber dan node tujuan. Host pengirim akan mengeset nilai dari field ini, dan field ini akan bertambah nilainya untuk datagram IP selanjutnya. Field ini digunakan untuk mengenali fragmen-fragmen sebuah datagram IP.
Flag
3 bit
Berisi dua buah flag yang berisi apakah sebuah datagram IP mengalami fragmentasi atau tidak. Meski berisi tiga bit, ada dua jenis nilai yang mungkin, yakni apakah hendak memecah datagram IP ke dalam beberapa fragmen atau tidak.
Fragment Offset
13 bit
Digunakan untuk mengidentifikasikan ofset di mana fragmen yang bersangkutan dimulai, dihitung dari permulaan muatan IP yang belum dipecah.
Time-to-Live (TTL)
8 bit
Digunakan untuk mengidentifikasikan berapa banyak saluran jaringan di mana sebuah datagram IP dapat berjalan-jalan sebelum sebuah router mengabaikan datagram tersebut. Field ini pada awalnya ditujukan sebagai penghitung waktu, untuk mengidentifikasikan berapa lama (dalam detik) sebuah datagram IP boleh terdapat di dalam jaringan. Adalah router IP yang memantau nilai ini, yang akan berkurang setiap kali hinggap dalam router.
Protocol
8 bit
Digunakan untuk mengidentifikasikan jenis protokol lapisan yang lebih tinggi yang dikandung oleh muatan IP. Field ini merupakan tanda eksplisit untuk protokol klien. Terdapat beberapa nilai dari field ini, seperti halnya nilai 1 (0x01) untuk ICMP, 6 (0x06) untuk TCP, dan 17 (0x11) untuk UDP (selengkapnya lihat di bawah). Field ini bertindak sebagai penanda multipleks (multiplex identifier), sehingga muatan IP pun dapat diteruskan ke protokol lapisan yang lebih tinggi saat diterima oleh node yang dituju.
Header Checksum
16 bit
Field ini berguna hanya untuk melakukan pengecekan integritas terhadap header IP, sementara muatan IP sendiri tidak dimasukkan ke dalamnya, sehingga muatan IP harus memiliki checksum mereka sendiri untuk melakukan pengecekan integritas terhadap muatan IP. Host pengirim akan melakukan pengecekan checksum terhadap datagram IP yang dikirimkan. Setiap router yang berada di dalam jalur transmisi antara sumber dan tujuan akan melakukan verifikasi terhadap field ini sebelum memproses paket. Jika verifikasi dianggap gagal, router pun akan mengabaikan datagram IP tersebut.
Karena setiap router yang berada di dalam jalur transmisi antara sumber dan tujuan akan mengurangi nilai TTL, maka header checksum pun akan berubah setiap kali datagram tersebut hinggap di setiap router yang dilewati.
Pada saat menghitung checksum terhadap semua field di dalam header IP, nilai header checksum akan diset ke nilai 0.

readmore »»

Ethernet

.
0 comments

Ethernet merupakan jenis skenario perkabelan dan pemrosesan sinyal untuk data jaringan komputer yang dikembangkan oleh Robert Metcalfe dan David Boggs di Xerox Palo Alto Research Center (PARC) pada tahun 1972.

Kartu Jaringan (Ethernet Card) tahun 1990an versi kombo dengan dua konektor masukan, kabel koaksial 10BASE2/konektor BNC (kiri) dan konektor RJ-45/Twisted-pair-based 10BASE-T (kanan)

Versi awal Xerox Ethernet dikeluarkan pada tahun 1975 dan di desain untuk menyambungkan 100 komputer pada kecepatan 2,94 megabit per detik melalui kabel sepanjang satu kilometer.
Desain tersebut menjadi sedemikian sukses di masa itu sehingga Xerox, Intel dan Digital Equipment Corporation (DEC) mengeluarkan standar Ethernet 10Mbps yang banyak digunakan pada jaringan komputer saat ini. Selain itu, terdapat standar Ethernet dengan kecepatan 100Mbps yang dikenal sebagai Fast Ethernet.
Asal Ethernet bermula dari sebuah pengembangan WAN di University of Hawaii pada akhir tahun 1960 yang dikenal dengan nama "ALOHA". Universitas tersebut memiliki daerah geografis kampus yang luas dan berkeinginan untuk menghubungkan komputer-komputer yang tersebar di kampus tersebut menjadi sebuah jaringan komputer kampus.
Proses standardisasi teknologi Ethernet akhirnya disetujui pada tahun 1985 oleh Institute of Electrical and Electronics Engineers (IEEE), dengan sebuah standar yang dikenal dengan Project 802. Standar IEEE selanjutnya diadopsi oleh International Organization for Standardization (ISO), sehingga menjadikannya sebuah standar internasional dan mendunia yang ditujukan untuk membentuk jaringan komputer. Karena kesederhanaan dan keandalannya, Ethernet pun dapat bertahan hingga saat ini, dan bahkan menjadi arsitektur jaringan yang paling banyak digunakan.

readmore »»

DNS (Domain Name System)

.
0 comments


Sistem Penamaan Domain ; SNR (bahasa Inggris: (Domain Name System; DNS) adalah sebuah sistem yang menyimpan informasi tentang nama host ataupun nama domain dalam bentuk basis data tersebar (distributed database) di dalam jaringan komputer, misalkan: Internet. DNS menyediakan alamat IP untuk setiap nama host dan mendata setiap server transmisi surat (mail exchange server) yang menerima surel (email) untuk setiap domain. Menurut browser Google Chrome, DNS adalah layanan jaringan yang menerjemahkan nama situs web menjadi alamat internet.

DNS menyediakan pelayanan yang cukup penting untuk Internet, ketika perangkat keras komputer dan jaringan bekerja dengan alamat IP untuk mengerjakan tugas seperti pengalamatan dan penjaluran (routing), manusia pada umumnya lebih memilih untuk menggunakan nama host dan nama domain, contohnya adalah penunjukan sumber universal (URL) dan alamat surel. Analogi yang umum digunakan untuk menjelaskan fungsinya adalah DNS bisa dianggap seperti buku telepon internet dimana saat pengguna mengetikkan www.indosat.net.id di peramban web maka pengguna akan diarahkan ke alamat IP 124.81.92.144 (IPv4) dan 2001:e00:d:10:3:140::83 (IPv6).


Sejarah singkat DNS
Penggunaan nama sebagai pengabstraksi alamat mesin di sebuah jaringan komputer yang lebih dikenal oleh manusia mengalahkan TCP/IP, dan kembali ke zaman ARPAnet. Dahulu, seluruh komputer di jaringan komputer menggunakan file HOSTS.TXT dari SRI (sekarang SIR International), yang memetakan sebuah alamat ke sebuah nama (secara teknis, file ini masih ada - sebagian besar sistem operasi modern menggunakannya dengan baik secara baku maupun melalui cara konfigurasi, dapat melihat Hosts file untuk menyamakan sebuah nama host menjadi sebuah alamat IP sebelum melakukan pencarian via DNS). Namun, sistem tersebut di atas mewarisi beberapa keterbatasan yang mencolok dari sisi prasyarat, setiap saat sebuah alamat komputer berubah, setiap sistem yang hendak berhubungan dengan komputer tersebut harus melakukan update terhadap file Hosts.
Dengan berkembangnya jaringan komputer, membutuhkan sistem yang bisa dikembangkan: sebuah sistem yang bisa mengganti alamat host hanya di satu tempat, host lain akan mempelajari perubaha tersebut secara dinamis. Inilah DNS.
Paul Mockapetris menemukan DNS di tahun 1983; spesifikasi asli muncul di RFC 882 dan 883. Tahun 1987, penerbitan RFC 1034 dan RFC 1035 membuat update terhadap spesifikasi DNS. Hal ini membuat RFC 882 dan RFC 883 tidak berlaku lagi. Beberapa RFC terkini telah memproposikan beberapa tambahan dari protokol inti DNS.

Teori bekerja DNS
Pengelola dari sistem DNS terdiri dari tiga komponen:
  1. DNS resolver, sebuah program klien yang berjalan di komputer pengguna, yang membuat permintaan DNS dari program aplikasi.
  2. Recursive DNS server, yang melakukan pencarian melalui DNS sebagai tanggapan permintaan dari resolver, dan mengembalikan jawaban kepada para resolver tersebut
  3. Authoritative DNS server yang memberikan jawaban terhadap permintaan dari recursor, baik dalam bentuk sebuah jawaban, maupun dalam bentuk delegasi (misalkan: mereferensikan ke authoritative DNS server lainnya)


Pengertian beberapa bagian dari nama domain

Sebuah nama domain biasanya terdiri dari dua bagian atau lebih (secara teknis disebut label), dipisahkan dengan titik.
  • Label paling kanan menyatakan top-level domain - domain tingkat atas/tinggi (misalkan, alamat www.wikipedia.org memiliki top-level domain org).
  • Setiap label di sebelah kirinya menyatakan sebuah sub-divisi atau subdomain dari domain yang lebih tinggi. Catatan: "subdomain" menyatakan ketergantungan relatif, bukan absolut. Contoh: wikipedia.org merupakan subdomain dari domain org, dan id.wikipedia.org dapat membentuk subdomain dari domain wikipedia.org (pada praktiknya, id.wikipedia.org sesungguhnya mewakili sebuah nama host - lihat dibawah). Secara teori, pembagian seperti ini dapat mencapai kedalaman 127 level, dan setiap label dapat terbentuk sampai dengan 63 karakter, selama total nama domain tidak melebihi panjang 255 karakter. Tetapi secara praktik, beberapa pendaftar nama domain (domain name registry) memiliki batas yang lebih sedikit.
  • Terakhir, bagian paling kiri dari bagian nama domain (biasanya) menyatakan nama host. Sisa dari nama domain menyatakan cara untuk membangun jalur logis untuk informasi yang dibutuhkan; nama host adalah tujuan sebenarnya dari nama sistem yang dicari alamat IP-nya. Contoh: nama domain www.wikipedia.org memiliki nama host "www".
DNS memiliki kumpulan hierarki dari DNS servers. Setiap domain atau subdomain memiliki satu atau lebih authoritative DNS Servers (server DNS otorisatif) yang mempublikasikan informasi tentang domain tersebut dan nama-nama server dari setiap domain di-"bawah"-nya. Pada puncak hirarki, terdapat root servers- induk server nama: server yang ditanyakan ketika mencari (menyelesaikan/resolving) dari sebuah nama domain tertinggi (top-level domain).


Sebuah contoh dari teori rekursif DNS
Sebuah contoh mungkin dapat memperjelas proses ini. Andaikan ada aplikasi yang memerlukan pencarian alamat IP dari www.wikipedia.org. Aplikasi tersebut bertanya ke DNS recursor lokal.
  • Sebelum dimulai, recursor harus mengetahui dimana dapat menemukan root nameserver; administrator dari recursive DNS server secara manual mengatur (dan melakukan update secara berkala) sebuah file dengan nama root hints zone (panduan akar DNS) yang menyatakan alamat-alamt IP dari para server tersebut.
  • Proses dimulai oleh recursor yang bertanya kepada para root server tersebut - misalkan: server dengan alamat IP "198.41.0.4" - pertanyaan "apakah alamat IP dari www.wikipedia.org?"
  • Root server menjawab dengan sebuah delegasi, arti kasarnya: "Saya tidak tahu alamat IP dari www.wikipedia.org, tapi saya "tahu" bahwa server DNS di 204.74.112.1 memiliki informasi tentang domain org."
  • Recursor DNS lokal kemudian bertanya kepada server DNS (yaitu: 204.74.112.1) pertanyaan yang sama seperti yang diberikan kepada root server. "apa alamat IP dari www.wikipedia.org?". (umumnya) akan didapatkan jawaban yang sejenis, "saya tidak tahu alamat dari www.wikipedia.org, tapi saya "tahu" bahwa server 207.142.131.234 memiliki informasi dari domain wikipedia.org."
  • Akhirnya, pertanyaan beralih kepada server DNS ketiga (207.142.131.234), yang menjawab dengan alamat IP yang dibutuhkan.
Proses ini menggunakan pencarian rekursif (recursion / recursive searching).



Pengertian pendaftaran domain dan glue records
Membaca contoh di atas, Anda mungkin bertanya: "bagaimana caranya DNS server 204.74.112.1 tahu alamat IP mana yang diberikan untuk domain wikipedia.org?" Pada awal proses, kita mencatat bahwa sebuah DNS recursor memiliki alamat IP dari para root server yang (kurang-lebih) didata secara explisit (hard coded). Mirip dengan hal tersebut, server nama (name server) yang otoritatif untuk top-level domain mengalami perubahan yang jarang.
Namun, server nama yang memberikan jawaban otorisatif bagi nama domain yang umum mengalami perubahan yang cukup sering. Sebagai bagian dari proses pendaftaran sebuah nama domain (dan beberapa waktu sesudahnya), pendaftar memberikan pendaftaran dengan server nama yang akan mengotorisasikan nama domain tersebut; maka ketika mendaftar wikipedia.org, domain tersebut terhubung dengan server nama gunther.bomis.com dan zwinger.wikipedia.org di pendaftar .org. Kemudian, dari contoh di atas, ketika server dikenali sebagai 204.74.112.1 menerima sebuah permintaan, DNS server memindai daftar domain yang ada, mencari wikipedia.org, dan mengembalikan server nama yang terhubung dengan domain tersebut.
Biasanya, server nama muncul berdasarkan urutan nama, selain berdasarkan alamat IP. Hal ini menimbulkan string lain dari permintaan DNS untuk menyelesaikan nama dari server nama; ketika sebuah alamat IP dari server nama mendapatkan sebuah pendaftaran di zona induk, para programmer jaringan komputer menamakannya sebuah glue record.

DNS dalam praktik
Ketika sebuah aplikasi (misalkan web broswer), hendak mencari alamat IP dari sebuah nama domain, aplikasi tersebut tidak harus mengikuti seluruh langkah yang disebutkan dalam teori di atas. Kita akan melihat dulu konsep caching, lalu mengartikan operasi DNS di "dunia nyata".
  • Caching dan masa hidup (caching and time to live)
    Karena jumlah permintaan yang besar dari sistem seperti DNS, perancang DNS menginginkan penyediaan mekanisme yang bisa mengurangi beban dari masing-masing server DNS. Rencana mekanisnya menyarankan bahwa ketika sebuah DNS resolver (klien) menerima sebuah jawaban DNS, informasi tersebut akan di cache untuk jangka waktu tertentu. Sebuah nilai (yang di-set oleh administrator dari server DNS yang memberikan jawaban) menyebutnya sebagai time to live (masa hidup), atau TTL yang mendefinisikan periode tersebut. Saat jawaban masuk ke dalam cache, resolver akan mengacu kepada jawaban yang disimpan di cache tersebut; hanya ketika TTL usai (atau saat administrator mengosongkan jawaban dari memori resolver secara manual) maka resolver menghubungi server DNS untuk informasi yang sama.
  • Waktu propagasi (propagation time)
    Satu akibat penting dari arsitektur tersebar dan cache adalah perubahan kepada suatu DNS terkadang efektif secara langsung dalam skala besar/global. Contoh berikut mungkin akan menjelaskannya: Jika seorang administrator telah mengatur TTL selama 6 jam untuk host www.wikipedia.org, kemudian mengganti alamat IP dari www.wikipedia.org pada pk 12:01, administrator harus mempertimbangkan bahwa ada (paling tidak) satu individu yang menyimpan cache jawaban dengan nilai lama pada pk 12:00 yang tidak akan menghubungi server DNS sampai dengan pk 18:00. Periode antara pk 12:00 dan pk 18:00 dalam contoh ini disebut sebagai waktu propagasi (propagation time), yang bisa didefiniskan sebagai periode waktu yang berawal antara saat terjadi perubahan dari data DNS, dan berakhir sesudah waktu maksimum yang telah ditentukan oleh TTL berlalu. Ini akan mengarahkan kepada pertimbangan logis yang penting ketika membuat perubahan kepada DNS: tidak semua akan melihat hal yang sama seperti yang Anda lihat. RFC1537 dapat membantu penjelasan ini.
  • DNS di dunia nyata
    Di dunia nyata, user tidak berhadapan langsung dengan DNS resolver - mereka berhadapan dengan program seperti web brower (Mozilla Firefox, Safari, Opera, Internet Explorer, Netscape, Konqueror dan lain-lain dan klien mail (Outlook Express, Mozilla Thunderbird dan lain-lain). Ketika user melakukan aktivitas yang meminta pencarian DNS (umumnya, nyaris semua aktivitas yang menggunakan Internet), program tersebut mengirimkan permintaan ke DNS Resolver yang ada di dalam sistem operasi.
    ·         DNS resolver akan selalu memiliki cache (lihat di atas) yang memiliki isi pencarian terakhir. Jika cache dapat memberikan jawaban kepada permintaan DNS, resolver akan menggunakan nilai yang ada di dalam cache kepada program yang memerlukan. Kalau cache tidak memiliki jawabannya, resolver akan mengirimkan permintaan ke server DNS tertentu. Untuk kebanyakan pengguna di rumah, Internet Service Provider(ISP) yang menghubungkan komputer tersebut biasanya akan menyediakan server DNS: pengguna tersebut akan mendata alamat server secara manual atau menggunakan DHCP untuk melakukan pendataan tersebut. Namun jika administrator sistem / pengguna telah mengkonfigurasi sistem untuk menggunakan server DNS selain yang diberikan secara default oleh ISP misalnya seperti Google Public DNS ataupun OpenDNS[1], maka DNS resolver akan mengacu ke DNS server yang sudah ditentukan. Server nama ini akan mengikuti proses yang disebutkan di Teori DNS, baik mereka menemukan jawabannya maupun tidak. Hasil pencarian akan diberikan kepada DNS resolver; diasumsikan telah ditemukan jawaban, resolver akan menyimpan hasilnya di cache untuk penggunaan berikutnya, dan memberikan hasilnya kepada software yang meminta pencarian DNS tersebut.
    Sebagai bagian akhir dari kerumitan ini, beberapa aplikasi seperti web browser juga memiliki DNS cache mereka sendiri, tujuannya adalah untuk mengurangi penggunaan referensi DNS resolver, yang akan meningkatkan kesulitan untuk melakukan debug DNS, yang menimbulkan kerancuan data yang lebih akurat. Cache seperti ini umumnya memiliki masa yang singkat dalam hitungan 1 menit.


Penerapan DNS lainnya
Sistem yang dijabarkan di atas memberikan skenario yang disederhanakan. DNS meliputi beberapa fungsi lainnya:
  1. Nama host dan alamat IP tidak berarti terhubung secara satu-banding-satu. Banyak nama host yang diwakili melalui alamat IP tunggal: gabungan dengan pengasuhan maya (virtual hosting), hal ini memungkinkan satu komputer untuk malayani beberapa situs web. Selain itu, sebuah nama host dapat mewakili beberapa alamat IP: ini akan membantu toleransi kesalahan (fault tolerance dan penyebaran beban (load distribution), juga membantu suatu situs berpindah dari satu lokasi fisik ke lokasi fisik lainnya secara mudah.
  2. Ada cukup banyak kegunaan DNS selain menerjemahkan nama ke alamat IP. Contoh:, agen pemindahan surat Mail transfer agents(MTA) menggunakan DNS untuk mencari tujuan pengiriman E-mail untuk alamat tertentu. Domain yang menginformasikan pemetaan exchange disediakan melalui rekod MX (MX record) yang meningkatkan lapisan tambahan untuk toleransi kesalahan dan penyebaran beban selain dari fungsi pemetaan nama ke alamat IP.
  3. Kerangka Peraturan Pengiriman (Sender Policy Framework) secara kontroversi menggunakan keuntungan jenis rekod DNS, dikenal sebagai rekod TXT.
  4. Menyediakan keluwesan untuk kegagalan komputer, beberapa server DNS memberikan perlindungan untuk setiap domain. Tepatnya, tigabelas server akar (root servers) digunakan oleh seluruh dunia. Program DNS maupun sistem operasi memiliki alamat IP dari seluruh server ini. Amerika Serikat memiliki, secara angka, semua kecuali tiga dari server akar tersebut. Namun, dikarenakan banyak server akar menerapkan anycast, yang memungkinkan beberapa komputer yang berbeda dapat berbagi alamat IP yang sama untuk mengirimkan satu jenis services melalui area geografis yang luas, banyak server yang secara fisik (bukan sekedar angka) terletak di luar Amerika Serikat.

DNS menggunakan TCP dan UDP di port komputer 53 untuk melayani permintaan DNS. Nyaris semua permintaan DNS berisi permintaan UDP tunggal dari klien yang dikuti oleh jawaban UDP tunggal dari server. Umumnya TCP ikut terlibat hanya ketika ukuran data jawaban melebihi 512 byte, atau untuk pertukaaran zona DNS zone transfer

Jenis-jenis catatan DNS
Beberapa kelompok penting dari data yang disimpan di dalam DNS adalah sebagai berikut:
  • A record atau catatan alamat memetakan sebuah nama host ke alamat IP 32-bit (untuk IPv4).
  • AAAA record atau catatan alamat IPv6 memetakan sebuah nama host ke alamat IP 128-bit (untuk IPv6).
  • CNAME record atau catatan nama kanonik membuat alias untuk nama domain. Domain yang di-alias-kan memiliki seluruh subdomain dan rekod DNS seperti aslinya.
  • [MX record]]' atau catatan pertukaran surat memetakan sebuah nama domain ke dalam daftar mail exchange server untuk domain tersebut.
  • PTR record atau catatan penunjuk memetakan sebuah nama host ke nama kanonik untuk host tersebut. Pembuatan rekod PTR untuk sebuah nama host di dalam domain in-addr.arpa yang mewakili sebuah alamat IP menerapkan pencarian balik DNS (reverse DNS lookup) untuk alamat tersebut. Contohnya (saat penulisan / penerjemahan artikel ini), www.icann.net memiliki alamat IP 192.0.34.164, tetapi sebuah rekod PTR memetakan ,,164.34.0.192.in-addr.arpa ke nama kanoniknya: referrals.icann.org.
  • NS record atau catatan server nama memetakan sebuah nama domain ke dalam satu daftar dari server DNS untuk domain tersebut. Pewakilan bergantung kepada rekod NS.
  • SOA record atau catatan otoritas awal (Start of Authority) mengacu server DNS yang mengediakan otorisasi informasi tentang sebuah domain Internet.
  • SRV record adalah catatan lokasi secara umum.
  • Catatan TXT mengijinkan administrator untuk memasukan data acak ke dalam catatan DNS; catatan ini juga digunakan di spesifikasi Sender Policy Framework.

Jenis catatan lainnya semata-mata untuk penyediaan informasi (contohnya, catatan LOC memberikan letak lokasi fisik dari sebuah host, atau data ujicoba (misalkan, catatan WKS memberikan sebuah daftar dari server yang memberikan servis yang dikenal (well-known service) seperti HTTP atau POP3 untuk sebuah domain.

Nama domain yang diinternasionalkan
Nama domain harus menggunakan satu sub-kumpulan dari karakter ASCII, hal ini mencegah beberapa bahasa untuk menggunakan nama maupun kata lokal mereka. ICANN telah menyetujui Punycode yang berbasiskan sistem IDNA, yang memetakan string Unicode ke karakter set yang valid untuk DNS, sebagai bentuk penyelesaian untuk masalah ini, dan beberapa registries sudah mengadopsi metode IDNS ini.

Perangkat lunak DNS
Beberapa jenis perangkat lunak yang menerapkan metode DNS, di antaranya:
  • BIND (Berkeley Internet Name Domain)
  • djbdns (Daniel J. Bernstein's DNS)
  • MaraDNS
  • QIP (Lucent Technologies)
  • NSD (Name Server Daemon)
  • Unbound
  • PowerDNS
  • Microsoft DNS (untuk edisi server dari Windows 2000 dan Windows 2003)

Utiliti berorientasi DNS termasuk:
  • dig (domain information groper)
Pengguna legal dari domain
Pendaftar (registrant)
Tidak satupun individu di dunia yang "memiliki" nama domain kecuali Network Information Centre (NIC), atau pendaftar nama domain (domain name registry). Sebagian besar dari NIC di dunia menerima biaya tahunan dari para pengguna legal dengan tujuan bagi si pengguna legal menggunakan nama domain tersebut. Jadi sejenis perjanjian sewa-menyewa terjadi, bergantung kepada syarat dan ketentuan pendaftar. Bergantung kepada beberpa peraturan penamaan dari para pendaftar, pengguna legal dikenal sebagai "pendaftar" (registrants) atau sebagai "pemegang domain" (domain holders)
ICANN memegang daftar lengkap untuk pendaftar domain di seluruh dunia. Siapapun dapat menemukan pengguna legal dari sebuah domain dengan mencari melalui basis data WHOIS yang disimpan oleh beberpa pendaftar domain.
Di (lebih kurang) 240 country code top-level domains (ccTLDs), pendaftar domain memegang sebuah acuan WHOIS (pendaftar dan nama server). Contohnya, IDNIC, NIC Indonesia, memegang informasi otorisatif WHOIS untuk nama domain .ID.
Namun, beberapa pendaftar domain, seperti VeriSign, menggunakan model pendaftar-pengguna. Untuk nama domain .COM dan .NET, pendaftar domain, VeriSign memegang informasi dasar WHOIS )pemegang domain dan server nama). Siapapun dapat mencari detail WHOIS (Pemegang domain, server nama, tanggal berlaku, dan lain sebagainya) melalui pendaftar.
Sejak sekitar 2001, kebanyakan pendaftar gTLD (.ORG, .BIZ, .INFO) telah mengadopsi metode pendaftar "tebal", menyimpan otoritatif WHOIS di beberapa pendaftar dan bukan pendaftar itu saja.

Kontak Administratif (Administrative Contact)
Satu pemegang domain biasanya menunjuk kontak administratif untuk menangani nama domain. Fungsi manajemen didelegasikan ke kontak administratif yang mencakup (diantaranya):
  • Keharusan untuk mengikuti syarat dari pendaftar domain dengan tujuan memiliki hak untuk menggunakan nama domain
  • Otorisasi untuk melakukan pemutakhiran ke alamat fisik, alamat surel dan nomor telepon dan lain sebagainya via WHOIS
Kontak Teknis (Technical Contact)
Satu kontak teknis menangani server nama dari sebuah nama domain. Beberapa dari banyak fungsi kontak teknis termasuk:
  • Memastikan bahwa konfigurasi dari nama domain mengikuti syarat dari pendaftar domain
  • Pemutakhiran zona domain
  • Menyediakan fungsi 24x7 untuk ke server nama (yang membuat nama domain bisa diakses)
Kontak Pembayaran (Billing Contact)
Tidak perlu dijelaskan, pihak ini adalah yang menerima tagihan dari NIC.

Server Nama (Name Servers)
Disebut sebagai server nama otoritatif yang mengasuh zona nama domain dari sebuah nama domain.

Politik
Banyak penyelidikan telah menyuarakan kritik dari metode yang digunakan sekarang untuk mengatur kepemilikan domain. Umumnya, kritik mengklaim penyalahgunaan dengan monopoli, seperti VeriSign Inc dan masalah-masalah dengan penunjukkan dari top-level domain (TLD). Lembaga international ICANN (Internet Corporation for Assigned Names and Numbers) memelihara industri nama domain.













readmore »»

NAT (Network Address Translation)

.
0 comments


Penafsiran alamat jaringan (Bahasa Inggris:Network Address Translation) adalah suatu metode untuk menghubungkan lebih dari satu komputer ke jaringan internet dengan menggunakan satu alamat IP. Banyaknya penggunaan metode ini disebabkan karena ketersediaan alamat IP yang terbatas, kebutuhan akan keamanan (security), dan kemudahan serta fleksibilitas dalam administrasi jaringan.

Saat ini, protokol IP yang banyak digunakan adalah IP versi 4 (IPv4). Dengan panjang alamat 4 byte berarti terdapat 2 pangkat 32 = 4.294.967.296 alamat IP yang tersedia. Jumlah ini secara teoretis adalah jumlah komputer yang dapat langsung koneksi ke internet. Karena keterbatasan inilah sebagian besar ISP (Internet Service Provider) hanya akan mengalokasikan satu alamat untuk satu pengguna dan alamat ini bersifat dinamik, dalam arti alamat IP yang diberikan akan berbeda setiap kali user melakukan koneksi ke internet. Hal ini akan menyulitkan untuk bisnis golongan menengah ke bawah. Di satu sisi mereka membutuhkan banyak komputer yang terkoneksi ke internet, akan tetapi di sisi lain hanya tersedia satu alamat IP yang berarti hanya ada satu komputer yang bisa terkoneksi ke internet. Hal ini bisa diatasi dengan metode NAT. Dengan NAT gateway yang dijalankan di salah satu komputer, satu alamat IP tersebut dapat dibagi ke beberapa komputer yang lain dan mereka bisa melakukan koneksi ke internet secara bersamaan.

Ketika suatu komputer terkoneksi ke internet, komputer tersebut tidak saja dapat mengakses, misalnya ke server suatu situs tertentu, tetapi komputer tersebut juga sangat mungkin untuk diakses oleh komputer lain yang juga terkoneksi ke internet. Jika disalahgunakan, hal tersebut bisa sangat berbahaya. Data-data penting bisa saja dilihat atau bahkan dicuri oleh orang yang tak bertanggungjawab. NAT secara otomatis akan memberikan proteksi seperti halnya firewall dengan hanya mengizinkan koneksi yang berasal dari dalam jaringan. Hal ini berarti tingkat keamanan suatu jaringan akan meningkat, karena kemungkinan koneksi dari luar ke dalam jaringan menjadi relatif sangat kecil.

Dengan NAT, suatu jaringan yang besar dapat dipecah-pecah menjadi jaringan yang lebih kecil. Bagian-bagian kecil tersebut masing-masing memiliki satu alamat IP, sehingga dapat menambahkan atau mengurangi jumlah komputer tanpa memengaruhi jaringan secara keseluruhan. Selain itu, pada gateway NAT modern terdapat server DHCP yang dapat mengkonfigurasi komputer client secara otomatis. Hal ini sangat menguntungkan bagi admin jaringan karena untuk mengubah konfigurasi jaringan, admin hanya perlu mengubah pada komputer server dan perubahan ini akan terjadi pada semua komputer client. Selain itu gateway NAT mampu membatasi akses ke internet, juga mampu mencatat semua traffic, dari dan ke internet. Secara keseluruhan, dengan segala kelebihan gateway NAT tersebut, admin jaringan akan sangat terbantu dalam melakukan tugas-tugasnya.

Jenis-jenis NAT
1. Full cone NAT



2. Restricted cone NAT





readmore »»